N | [VERPOOL

JOHN MOORES

UNIVERSITY

School of Computer Science and Mathematics
Further Programming with MicroPython and the BBC micro:bit

Congratulations on completing the ‘Getting Started’ section!
Firstly, the tasks set at the end of the last section can be answered:

To have a message scroll every time you press button a:

from microbit import *
while True:
if button_a.is_pressed():
display.scroll("Hello Welcome to LIMU Computer Science and Mathematics")

To store the scrolling message in a variable:

from microbit import*
m="Hello Welcome to LIMU Computer Science and Mathematics"
display.scroll(m)

There now follows a look at how functions are used in (Micro)Python. Functions are the
building blocks of reusable code in Python. They allow you to break down complex tasks into
smaller, manageable chunks, making your code more organized and efficient. A function
starts with a ‘def’ followed by the function name. The function body then uses the variable
passed to it in the function to produce an output using any of the python features, ‘if’, ‘while’,
etc. The code in Figure 1 shows the square function, where the input into the function is
squared.

from microbit impert *

def square(num):
result = num*num
return result

MPY: soft reboot

- -

MicroPython (BEC micro:bit) « BBC micro:bit CMSIS-DAP @ /dev/cu.usbmodemFD142 =

Figure 1: A Function Definition in Python



= | VERPOOL

JOHN MOORES

UNIVERSITY

School of Computer Science and Mathematics

We can now call the function in the program. Then if you flash your micro:bit with this
program (press green button with arrow at top of Thonny interface), you will see ‘64’ (8
squared) scroll across the micro;bit.

from microbit import *

def square(num):
result = num*num
return result

n = square(g)

display.scroll(str(n))

MPY: soft reboot

>3

=

=
MicroePython (BBC micro:bit) « BBC micro:bit CMSIS-DAP @ /dev/cu.usbmodemFD142 =

Figure 2: Calling the Function
You can change the number that the function calls and send that program to your micro:bit.
Next a slightly more complex function; factorial, sometimes denoted by the operator ‘!".

The factorial of a number is that number multiplied by every whole number less than it down
to 1. For example, the factorial of 5 (5!) is 5x4x3x2x1 = 120. The code in Figure 3 show a
function for calculating factorials.

The value of the factorial (fac) is originally set to 1 we then multiply this by the number that
was input into the function, then decrease this by 1 until that number is 1. In other words,
factorial(num) is worked out by:

Setting a variable fac to 1 then multiplying fac by num, giving this value to fac, then decreasing
num by 1 and multiplying this new value of fac by the new value of num, carrying on in this
way until num is equal to 1. The while loop in the program accomplishes this. We finally write
a couple of line to call the function to test it and see the result scroll across the micro:bit. You
can of course choose any number to call the factorial function in your program.



= | VERPOOL

JOHN MOORES

UNIVERSITY

School of Computer Science anc! Mathematiqs

from microbit import*
def factorial(num)
fac = 1
while num > 1:
fac = fac*num
num = num-1
return fac
n=factorial(5s)
display.scroll(str{n))

Shell

>y

MPY: soft reboot

>3

MicrePython (BEC micro:bit) « BBC micro:bit CMSIS-DAP @ /dev/cu.usbmodemFD142 =

Figure3: The Factorial Function in Python

A major issue in writing programs and coding solutions to problems is producing the most
efficient code. In mathematics and computer science recursion is a powerful algorithmic
technique. Basically, recursion is a function calling itself. Notice on our previously defined
factorial function the factorial of a number n is equal to the n multiplied by the factorial of n
— 1. For example, the factorial of 4 (= 4x3x2x1) is equal to 4 multiplied by the factorial of 3
(=3x2x1). We could use recursion to write a more efficient piece of code.

from micrebit import*
def factorial(num):
if num == 1:
return 1
return num*factorial(num-1)
n=factorial(5s)
display.scroll(str(n))

Shell

>33

MPY: soft reboot

>33

MicroPythen (BBC micro:bit) « BBC micro:bit CMSIS-DAP @ /dev/cu.usbmodemFD142 =

Figure 4: The Factorial Function in Python using Recursion



N | [VERPOOL

JOHN MOORES

UNIVERSITY

School of Computer Science and Mathematics
Notice for the code in Figure4, to check if two things are equal the ‘==" symbol is used to
distinguish from =" used as a variable assignment.

Finally in this part, the number passed to a function could be input using the micro:bit’s
buttons to make a more interactive experience.

from microbit import*
counter = @
def factorial(num):
if num == 1:
return 1
return num*factorial(num-1})
while True:
if button_a.was_pressed():
counter +=1
if button_b.was_pressed():
break
display.scroll(str(counter))
n=factorial(counter)
display.scroll("Facrorial of " + str{counter)+" is " + str(n))

-
-

MFY: soft reboot

>33

=

MicroPython (BBC micro:bit) « BBC micro:bit CMSIS-DAP @ [dev/cu.usbmodemFD142 =

Figure 5: An Interactive Factorial Function in Python on a micro:bit




